Euler Problem 13

Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. 37107287533902102798797998220837590246510135740250 46376937677490009712648124896970078050417018260538 74324986199524741059474233309513058123726617309629 91942213363574161572522430563301811072406154908250 23067588207539346171171980310421047513778063246676 89261670696623633820136378418383684178734361726757 28112879812849979408065481931592621691275889832738 44274228917432520321923589422876796487670272189318 47451445736001306439091167216856844588711603153276 70386486105843025439939619828917593665686757934951 62176457141856560629502157223196586755079324193331 (and so on…) To a ruby programmer, this problem looks trivial; just calculate the sum as requested: s = <em>&lt;big string of numbers&gt;</em> a = s.split(’ ‘).map{ |line| line.to_i […]

Posted at 06:45 on March 23, 2012 | leave a comment | Filed Under: euler | read on

Euler Problem 12

The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, … Let us list the […]

Posted at 10:00 on March 16, 2012 | leave a comment | Filed Under: euler | read on

Monthly Archives